Органы чувств: как они работают

Глаза как показатель состояния

Глаза человека способны передавать немало информации в процессе его взаимодействия с другими людьми и окружающим миром. Глаза могут излучать любовь, гореть от гнева, отражать радость, страх или беспокойство, говорить о тревоге или усталости. Глаза показывают, куда смотрит человек, заинтересован он в чём-либо или же нет.

Например, когда люди закатывают глаза, беседуя с кем-то, это можно расценивать совершенно иначе, нежели обычный взгляд, направленный вверх. Большие глаза у детей вызывают у окружающих восторг и умиление. А состояние зрачков отражает то состояние сознания, в котором в данный момент времени находится человек. Глаза – это показатель жизни и смерти, если уж говорить в глобальном смысле. Наверное, именно по этой причине их называют зеркалом души.

Рецептивные поля

Классы ганглионарных и биполярных клеток и их электрические реакции.
Источник таблицы: http://old.www.bio.bsu.by/phha/19/19_text.html

Классы клеток

Реакция нервных клеток при освещении фоторецепторов, находящихся

в центральной части РП

в периферической части РП

Биполярные клетки ON типа Деполяризация Гиперполяризация
Биполярные клетки OFF типа Гиперполяризация Деполяризация
Ганглионарные клетки ON типа Деполяризация и увеличение частоты ПД Гиперполяризация и снижение частоты ПД
Ганглионарные клетки OFF типа Гиперполяризация и снижение частоты ПД Деполяризация и увеличение частоты ПД
Ганглионарные клетки ON — OFF типа

Дают короткий ON -ответ на стационарный световой стимул и короткую OFF -реакцию на ослабление света.

 ON-центром OFF-центромON-центромoffON-OFFonoff

На связи

Рецептивные поля биполярных и ганглионарных клеток имеют круглую форму. В рецептивном поле можно выделить центральную и периферическую часть (центральная всегда противоположна периферической, если центр ON, то периферия, соответственно, OFF). Граница между центральной и периферической часть рецептивного поля является динамичной и может смещаться при изменении уровня освещенности . Перекрытие рецептивных полей различных ганглионарных клеток позволяет повышать световую чувствительность при низком пространственном разрешении .

Структура глаза

Человеческий глаз, как и глаза многих животных, имеет почти шарообразную форму (рисунок 1). Этот шар целиком называют глазным яблоком. Он защищен специальной плотной оболочкой — склерой.

Рисунок 1. Структура глаза человека

Передняя часть склеры — это роговая оболочка 1 (роговица). Она прозрачная.

За роговой оболочкой находится радужная оболочка 2 (радужка). Именно эта часть глаза бывает разных цветов.Пространство между радужкой и роговицей заполнено водянистой жидкостью.

Как вы видите из рисунка 1, радужная оболочка не покрывает глаз по всему объему, в ней есть отверстие. Это отверстие и есть наш зрачок 3.

Вы знаете, что наши зрачки могут сужаться и расширяться. В это время меняется диаметр зрачка. В среднем изменения составляют от 2 до 8 мм. Такие изменения размеров возможны благодаря способности радужной оболочки раздвигаться и сдвигаться.

Важно понимать, что наш зрачок — это не какое-то физическое тело, а лишь обозначение отверстия в радужке. При движениях радужки это отверстие может увеличиваться или уменьшаться

За зрачком у нас находится прозрачное тело, по форме похожее на собирающую линзу, — хрусталик 4. Он крепится к склере с помощью мышц 5.

За хрусталиком находится стекловидное тело 6. Оно тоже прозрачное, и заполняет собой большую часть глаза.

Задняя часть склеры называется глазным дном. Оно покрыто сетчатой оболочкой 7 (сетчаткой). Эта оболочка не гладкая, она состоит из множества тончайших волокон. Эти волокна представляют собой разветвленные окончания зрительного нерва, чувствительные к свету.

{"questions":,"answer":}}}]}

Значение «фотоплёнки»

Результатом фокусировки становится сосредоточение изображения на сетчатке, представляющей собой многослойную ткань, чувствительную к свету, покрывающую заднюю часть глазного яблока. В сетчатке содержится примерно 130 миллионов фоторецепторов (для сравнения можно привести современные цифровые фотоаппараты, в которых подобных сенсорных элементов не более 10 000 000) . Такое громадное количество фоторецепторов обусловлено тем, что расположены они крайне плотно – примерно 400 000 на 1 мм².

Здесь не будет лишним привести слова специалиста по микробиологии Алана Л. Гиллена, говорящего в своей книге «Тело по замыслу» о сетчатке глаза, как о шедевре инженерного проектирования. Он считает, что сетчатка является самым удивительным элементом глаза, сравнимым с фотоплёнкой. Светочувствительная сетчатка, расположенная на задней стороне глазного яблока, намного тоньше целлофана (её толщина составляет не более 0,2 мм) и гораздо чувствительнее, чем любая, созданная человеком фотоплёнка. Клетки этого уникального слоя способны обрабатывать до 10 миллиардов фотонов, в то время как самый чувствительный фотоаппарат способен обработать лишь несколько их тысяч . Но ещё удивительнее то, что человеческий глаз может улавливать единицы фотонов даже в темноте:

Всего сетчатку составляют 10 слоёв фоторецепторных клеток, 6 слоёв из которых являются слоями светочувствительных клеток. 2 вида фоторецепторов имеют особую форму, по причине чего их называют колбочками и палочками. Палочки крайне восприимчивы к свету и обеспечивают глазу чёрно-белое восприятие и ночное зрение. Колбочки, в свою очередь, не так восприимчивы к свету, но способны различать цвета – оптимальная работа колбочек отмечается в дневное время суток.

Благодаря работе фоторецепторов световые лучи трансформируются в комплексы электрических импульсов и посылаются в мозг на невероятно большой скорости, а сами эти импульсы за доли секунд преодолевают свыше миллиона нервных волокон.

Связь фоторецепторных клеток в сетчатке очень сложна. Колбочки и палочки никак напрямую с мозгом не связаны. Получив сигнал, они переадресовывают его биполярным клеткам, а те перенаправляют уже обработанные собою сигналы ганглиозным клеткам, более миллиона аксонов (нейритов, по которым передаются нервные импульсы) которых составляют единый зрительный нерв, по которому данные и поступают в мозг:

Два слоя промежуточных нейронов, до того как зрительные данные будут отправлены в мозг, способствуют параллельной обработке этой информации шестью уровнями восприятия, находящимися в сетчатке глаза. Необходимо это для того чтобы изображения распознавались как можно быстрее.

Причины миопии

Что является факторами риска развития миопии?

  • Наследственность. У близоруких родителей высока вероятность того, что их дети тоже будут близорукими. Но считается, что генетически передается не сама миопия, а предрасположенность к ней.

  • Ранние и длительные зрительные нагрузки на близком расстоянии – чтение, письмо, рисование, использование гаджетов. Дети, которые слишком рано начали активно читать, писать (в 3-4 года), из-за незрелости и неподготовленности оптических систем рискуют надеть очки еще до школы.

  • Отсутствие прогулок, подвижных игр на свежем воздухе – школьники, которые проводят более 3-4 часов в день за играми в планшете или телефоне, чаще надевают очки в 9-12 лет в отличии от сверстников, которые проводят свое свободное время на улице.

  • Недостаток витаминов и минералов – кальция, цинка, меди, витамина D и других.

  • Неблагоприятный психологический климат в семье, в школе – дети, которые наблюдаются с неврозами, фобиями, подвержены развитию близорукости даже при отсутствии других факторов риска.

  • Быстрый рост ребенка в подростковом периоде – длина глазного яблока увеличивается быстрее, чем возможности оптических систем.

И если на некоторые факторы риска родители и врачи повлиять не могут (генетическая предрасположенность, быстрый рост ребенка), то на другие факторы воздействовать можно, увеличивая долю зрительной нагрузки на дальнее расстояние, применяя витаминно-минеральные комплексы и ограничивая время работы с гаджетами.

Фокусировка

Минуя названные выше этапы, свет начинает проходить через хрусталик, находящийся за радужкой. Хрусталик является оптическим элементом, имеющим форму выпуклого продолговатого шара. Хрусталик абсолютно гладок и прозрачен, в нём нет кровеносных сосудов, а сам он расположен в эластичном мешочке.

Проходя сквозь хрусталик, свет преломляется, после чего происходит его фокусировка на ямке сетчатки – самом чувствительном месте, содержащем максимальное количество фоторецепторов:

Важно заметить, что уникальное строение и состав обеспечивают роговице и хрусталику большую силу преломления, гарантирующую короткое фокусное расстояние. И как же удивительно, что такая сложная система вмещается всего в одном глазном яблоке (подумайте только, как бы мог выглядеть человек, если бы для фокусировки световых лучей, идущих от предметов, требовался бы, например, метр!). Не менее интересно и то, что совместная преломляющая сила этих двух элементов (роговицы и хрусталика) находится в прекрасном соотношении с глазным яблоком, а это можно смело назвать ещё одним доказательством того, что зрительная система создана просто непревзойдённо

Не менее интересно и то, что совместная преломляющая сила этих двух элементов (роговицы и хрусталика) находится в прекрасном соотношении с глазным яблоком, а это можно смело назвать ещё одним доказательством того, что зрительная система создана просто непревзойдённо.

Если же речь идёт о предметах расположенных близко к глазу, то здесь всё ещё любопытнее, ведь в этой ситуации преломление световых лучей оказывается ещё более сильным. Обеспечивается же это увеличением кривизны хрусталика. Хрусталик соединён посредством цилиарных поясков с ресничной мышцей, которая, сокращаясь, даёт хрусталику возможность принимать более выпуклую форму, тем самым увеличивая свою преломляющую силу.

И здесь снова нельзя не упомянуть о сложнейшем строении хрусталика: составляют его множество ниточек, которые состоят из соединённых друг с другом клеточек, а тонкие пояски связывают его с цилиарным телом. Фокусировка осуществляется под контролем головного мозга крайне быстро и на полном «автомате», т.е. неосознанно.

Нос — обоняние — мир запахов

Как часто мы говорим: «Вкусно пахнет». Потому что со вкусом неразрывно связано обоняние. Эти рецепторы расположены в слизистой оболочке верхних носовых ходов в двух желобовидных ямках. Общая площадь чувствительной зоны не превышает 5 квадратных сантиметров, но в ней насчитываются миллионы обонятельных клеток.

С помощью электронного микроскопа удалось установить, что на поверхности каждой из них содержится от 6 до 12 подвижных ресничек. Это в десятки раз увеличивает обонятельную площадь.

Для возникновения ощущения запаха необходимо, чтобы присутствующее во вдыхаемом воздухе ароматное вещество растворилось в жидкой слизистой пленке, укрывающей обонятельные клетки. Долей секунды достаточно, чтобы это произошло, и тогда чувствительные нервные окончания, уловив молекулы пахучего вещества, извещают мозг, и возникает ощущение запаха.

Это очень коротко об органах чувств, классифицированных Аристотелем более двух тысяч лет назад, но до настоящего времени представляющих огромный интерес для всестороннего изучения. По сложности они намного превосходят многочисленные приборы, сконструированные человеком.

Нормальные коэффициенты

Нормальная острота зрения взрослого человека — 1,0 (100%). У детей нормы остроты зрения меньше и зависит от возраста.

Какое самое лучшее зрение

Верхнего предела вам никто не назовёт. Стандартные таблицы определяют до 2,0. Рекорд Гиннесса принадлежит Веронике Зайдер из Германии в 1972 году и составляет 20,01.

Показатели ниже 1,0. Что это значит?

Всё зависит от того насколько ниже. Острота зрения может очень сильно колебаться в течение дня и зависит от эмоционального состояния, уровня сахара крови, артериального давления. Ваш лечащий врач должен проконсультировать вас по данному поводу.

Источники

  • Gattei CA., París LA., Shalom DE. Information Structure and Word Order Canonicity in the Comprehension of Spanish Texts: An Eye-Tracking Study. // Front Psychol — 2021 — Vol12 — NNULL — p.629724; PMID:33889108
  • Howell KJ., Beston SM., Stearns S., Walsh MR. Coordinated evolution of brain size, structure, and eye size in Trinidadian killifish. // Ecol Evol — 2021 — Vol11 — N1 — p.365-375; PMID:33437435
  • Hura AS., Epitropoulos AT., Czyz CN., Rosenberg ED. Visible Meibomian Gland Structure Increases After Vectored Thermal Pulsation Treatment in Dry Eye Disease Patients with Meibomian Gland Dysfunction. // Clin Ophthalmol — 2020 — Vol14 — NNULL — p.4287-4296; PMID:33324034
  • Onuk B., Pehlivan OY., Yardimci B. The fine structure of the turbot eye (Scophtalmus maximus): A macro-anatomical, light and scanning electron microscopical study. // Microsc Res Tech — 2020 — Vol — NNULL — p.; PMID:33316113
  • Merabishvili VM., Merabishvili EN. // Adv Gerontol — 2020 — Vol33 — N3 — p.561-568; PMID:33280343
  • Varija Raghu S., Thamankar R. A Comparative Study of Crystallography and Defect Structure of Corneal Nipple Array in Daphnis nerii Moth and Papilio polytes Butterfly Eye. // ACS Omega — 2020 — Vol5 — N37 — p.23662-23671; PMID:32984686
  • Guo Y., Pang Y., Kang Y., Zhang X., Zhang H., Zhang G., Liu L. Correlations among peripapillary vasculature, macular superficial capillaries, and eye structure in healthy and myopic eyes of Chinese young adults (STROBE). // Medicine (Baltimore) — 2020 — Vol99 — N37 — p.e22171; PMID:32925785
  • Berbel-Filho WM., Tatarenkov A., Espírito-Santo HMV., Lira MG., Garcia de Leaniz C., Lima SMQ., Consuegra S. More than meets the eye: syntopic and morphologically similar mangrove killifish species show different mating systems and patterns of genetic structure along the Brazilian coast. // Heredity (Edinb) — 2020 — Vol125 — N5 — p.340-352; PMID:32826964
  • Itta F., Liuzzi R., Farella A., Porri G., Pacelli R., Conson M., Oliviero C., Buonanno F., Breve MA., Cennamo G., Clemente S., Cella L. Personalized treatment planning in eye brachytherapy for ocular melanoma: Dosimetric analysis on ophthalmic structure at risk. // Phys Med — 2020 — Vol76 — NNULL — p.285-293; PMID:32738776
  • Harsolia RS., Kanwar A., Gour S., Kumar V., Kumar V., Bansal R., Kumar S., Singh M., Yadav JK. Predicted aggregation-prone region (APR) in βB1-crystallin forms the amyloid-like structure and induces aggregation of soluble proteins isolated from human cataractous eye lens. // Int J Biol Macromol — 2020 — Vol163 — NNULL — p.702-710; PMID:32650012

Глаза — орган зрения

Все органы чувств удивительно сложны по своей конструкции, но поистине шедевром «приборостроения» природы можно назвать глаз человека. Четырьмя пятыми наших сведений о мире мы обязаны своим глазам.

Оптическая система глаза преломляет лучи света так, что на внутренней оболочке глазного яблока — сетчатке фокусируются изображения предметов. А в сетчатке расположены светочувствительные клетки. 7 миллионов колбочек, собранных ближе к ее центру, трудятся днем, они ответственны за цветовое зрение.

130 миллионов палочек разбросаны в основном по периферии сетчатки и работают в ночное время, создавая черно-белое изображение. Будь в глазу только палочки, мир казался бы нам серым, лишенным всяких красок.

Глазное яблоко неутомимо движется. На чем бы мы ни остановили свой взор, и к какой бы картине его ни приковали, задержка взгляда — явление кажущееся. На самом деле глаза все время скачкообразно перемещается из стороны в сторону, то вверх, то вниз.

В результате изображение на сетчатке непрерывно смещается и таким образом достигается раздражение новых колбочек или палочек. Без этого рецепторы быстро привыкли бы к однообразному световому потоку и перестали бы информировать мозг об окружающих нас предметах. Остановись глаз хоть на минуту, и вскоре в комнате «растают» стены, «исчезнут» столы, шкафы и даже зажженная люстра.

Пять органов чувств

Анализаторы

С первого дня появления ребёнка на свет зрение помогает ему познавать окружающий мир. С помощью глаз человек видит чудесный мир красок и солнца, зримо воспринимает колоссальный поток информации. Глаза дают человеку возможность читать и писать, знакомиться с произведениями искусства и литературы. Любая профессиональная работа требует от нас хорошего, полноценного зрения.

На человека постоянно действует непрерывный поток внешних раздражителей и разнообразная информация о процессах внутри организма. Понять эту информацию и правильно отреагировать на большое число происходящих вокруг событий позволяют человеку органы чувств. Среди раздражителей внешней среды для человека особенно большое значение имеют зрительные. Большая часть наших сведений о внешнем мире связана со зрением. Зрительный анализатор (зрительная сенсорная система) является важнейшим из всех анализаторов, т.к. он даёт 90% информации, которая идёт к мозгу от всех рецепторов. При помощи глаз мы не только воспринимаем свет и узнаём цвет объектов окружающего мира, но и получаем представление о форме предметов, их удалённости, размерах, высоте, ширине, глубине, иначе говоря, об их пространственном расположении. И всё это благодаря тонкому и сложному строению глаз и их связям с корой головного мозга.

Строение глаза. Вспомогательный аппарат глаза

Глаз — находится в орбитальной впадине черепа — в глазнице, сзади и с боков окружён мышцами, которые его двигают. Он состоит из глазного яблока со зрительным нервом и вспомогательных аппаратов.

Глаз — самый подвижный из всех органов человеческого организма. Он совершает постоянные движения, даже в состоянии кажущегося покоя. Мелкие движения глаз (микродвижения) играют значительную роль в зрительном восприятии. Без них невозможно было бы различать предметы. Кроме того, глаза совершают заметные движения (макродвижения) — повороты, перевод взора с одного предмета на другой, слежение за движущимися предметами. Различные движения глаза, повороты в стороны, вверх, вниз обеспечивают глазодвигательных мышцы, расположенные в глазнице. Всего их шесть. Четыре прямые мышцы крепятся к передней части склеры — и каждая из них поворачивает глаз в свою сторону. А две косые мышцы, верхняя и нижняя, прикрепляются к задней части склеры. Согласованное действие глазодвигательных мышц обеспечивает одновременный поворот глаз в ту или иную сторону.

Орган зрения нуждается в защите от повреждений для нормального развития и работы. Защитными приспособлениями глаз являются брови, веки и слёзная жидкость.

Бровь — парная дугообразная складка толстой кожи, покрытая волосами, в которую вплетаются лежащие под кожей мышцы. Брови отводят пот со лба и служат для защиты от очень яркого света. Веки закрываются рефлекторно. При этом они изолируют сетчатку от действия света, а роговицу и склеру — от каких-либо вредных воздействий. При моргании происходит равномерное распределение слёзной жидкости по всей поверхности глаза, благодаря чему глаз предохраняется от высыхания. Верхнее веко больше, чем нижнее, и его поднимает мышца. Веки закрываются за счёт сокращения круговой мышцы глаза, имеющей циркулярную ориентацию мышечных волокон. По свободному краю век располагаются ресницы, которые защищают глаза от пыли и слишком яркого света.

Слёзный аппарат. Слёзная жидкость вырабатывается специальными железами. Она содержит 97,8% воды, 1,4% органических веществ и 0,8% солей. Слёзы увлажняют роговицу и способствуют сохранению её прозрачности. Кроме того, они смывают с поверхности глаза, а иногда и век попавшие туда инородные тела, соринки, пыль и т.п. В слёзной жидкости содержатся вещества, убивающие микробов через слёзные канальцы, отверстия которых расположены во внутренних уголках глаз, попадает в так называемый слёзный мешок, а уже отсюда — в носовую полость.

Глазное яблоко имеет не совсем правильную шаровидную форму. Диаметр глазного яблока составляет примерно 2,5 см. В движении глазного яблока принимает участие шесть мышц. Из них четыре прямые и две косые. Мышцы лежат внутри глазницы, начинаются от её костных стенок и прикрепляются к белочной оболочке глазного яблока позади роговицы. Стенки глазного яблока образованы тремя оболочками.

Внутреннее ядро глаза человека включает в себя:

  • стекловидное тело — это принимающая форму глазного яблока, желеобразная, субстанция. Находится непосредственно за хрусталиком. В анатомии глаза основные функции стекловидного тела — это питание сетчатки, обеспечение нормального уровня внутриглазного давления и защита хрусталика.
  • хрусталик — двояковыпуклая линза. Именно за счет способности хрусталика к аккомодации, мы можем видеть предметы находящиеся как на близком, так и на далеком от нас расстоянии. Световые лучи, проходя через хрусталик преломляются и фокусируются точно на сетчатке, что дает возможность видеть четкую и яркую зрительную картинку.
  • камеры глаза. Передняя камера (пантериум) находится сразу за роговицей глаза и ограничивается радужкой. Задняя камера (астериум) — располагается за радужкой и ограничивается стекловидным телом. Камеры глаза заполнены внутриглазной жидкостью и сообщаются между собой через зрачок. Во внутриглазной жидкости находятся необходимые питательные вещества, необходимые для правильного функционирования глаза. Внутриглазная жидкость также является местом, куда попадают продукты обмена, которые выводятся из глаза в кровоток.

Камеры глаза должны иметь постоянный объем. Обычно он составляет от 1,23 до 1,32 куб.см.

При нарушении оттока жидкости внутриглазное давление повышается, что может привести к серьезным заболеваниям.

Глаз как оптический прибор

Параллельным потоком световое излучение попадает на радужная оболочку (выполняет роль диафрагмы), с отверстием, через которое свет поступает в глаз; эластичный хрусталик — это своеобразная двояковыпуклая линза, фокусирующая изображение; эластичная полость (стекловидное тело), придающая глазу сферическую форму и удерживающая на своих местах его элементы. Хрусталик и стекловидное тело обладают свойствами передавать структуру видимого изображения с наименьшими искажениями. Регулирующие органы управляют непроизвольными движениями глаза и приспосабливают его функциональные элементы к конкретным условиям восприятия. Они изменяют пропускную способность диафрагмы, фокусное расстояние линзы, давление внутри эластичной полости и другие характеристики. Управляют этими процессами центры в среднем мозгу с помощью множества чувствительных и исполнительных элементов, распределенных по всему глазному яблоку. Измерение световых сигналов происходит во внутреннем слое сетчатки, состоящем из множества фоторецепторов, способные преобразовывать световое излучение в нервные импульсы. Фоторецепторы в сетчатке распределены неравномерно, образуя три области восприятия.

Первая — область обзора — находится в центральной части сетчатки. Плотность фоторецепторов в ней наивысшая, поэтому она обеспечивает четкое цветное изображение предмета. Все фоторецепторы в этой области по своему устройству в принципе одинаковы, отличаются они только избирательной чувствительностью к длинам волн светового излучения. Одни из них наиболее чувствительны к излучениям (средняя части), вторые — в верхней части, третьи — в нижней. У человека есть три вида фоторецепторов, реагирующих на синие, зеленые и красные цвета. Здесь же, в сетчатке, выходные сигналы этих фоторецепторов совместно обрабатываются в результате чего усиливается контраст изображения, выделяются контуры объектов и определяется их цвет.

Объемное изображение воспроизводится в коре головного мозга, куда направляются видеосигналы от правого и левого глаза. У человека область обзора охватывает всего в 5°, и только в ее пределах он может осуществлять обзорно-сравнительные измерения (ориентироваться в пространстве, распознавать объекты, следить за ними, определять их относительное расположение и направление движения). Вторая область восприятия выполняет функцию захвата целей. Она располагается вокруг области обзора и не дает четкого изображения видимой картины. Ее задача — быстрое обнаружение контрастных целей и изменений, происходящих во внешней обстановке. Поэтому в этой области сетчатки плотность обычных фоторецепторов невысока (почти в 100 раз меньше, чем в области обзора), зато имеется множество (в 150 раз больше) других, адаптивных фоторецепторов, реагирующих только на изменение сигнала. Совместная обработка сигналов тех и других фоторецепторов обеспечивает высокое быстродействие зрительного восприятия в этой области. Кроме того, человек способен быстро улавливать малейшие движения боковым зрением. Функциями захвата управляют отделы среднего мозга. Здесь интересующий объект не рассматривается и не распознается, а определяется его относительное расположение, скорость и направление движения и даётся команда глазодвигательным мышцам — быстро повернуть оптические оси глаз так, чтобы объект попал в зону обзора для детального рассмотрения.

Третью область образуют краевые участки сетчатки, на которые не попадает изображение объекта. В ней плотность фоторецепторов самая маленькая — в 4000 раз меньше, чем в области обзора. Ее задача — измерение усредненной яркости света, которая используется зрением как точка отсчета для определения интенсивности попадающих в глаз потоков света. Именно поэтому при различном освещении зрительное восприятие меняется.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Мобильный музей
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: